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ABSTRACT 

We show that every uncountable regular cardinal can become N 1 in a suitable 
Cohen extension by a real (set of integers) without destroying larger cardinals. 
The proof is analyzed to obtain results about the powers of Boolean algebras. 

The following result, which is the main theorem of this paper, is almost proved 

by Jensen and Solovay in [4, Sect. 3]. 

THEOREM 1. Let M be a countable transitive e-model of ZFC, and let 0 

be a regular uncountable cardinal in M. Then there is an a ~ 09 such that M[a] 

is a Cohen extension of M having the same cardinals greater than or equal to 0 

as M and satisfying N~ tal = 0. 

We prove the theorem in Section 1 by a small modification of the argument 

of I-4, (3.3)--(3.6)]. In Section 2 we analyze the construction in terms of Boolean 

algebras, and in Section 3 we determine the possible non-strongly Mahlo powers 

of countably generated complete Boolean algebras. 

We assume knowledge of 14, Sect. 2-3], and follow its terminology. 

1. Proof of  the Theorem 1 

Let M be a fixed, countable, transitive E-model of ZFC, 0 an uncountable 

regular cardinal in M.  We wish to prove that 

(1) there is an a G 09 such that M[a] is a model of ZFC, N ~  tal= 0, and 

M[a] has the same cardinals greater than or equal to 0 as M.  

The only additional claim in Theorem 1 is that M [a] is a Cohen extension 

of M.  Here we prove only (1). In Seciion 2 a simple analysis of the proof will 

show that we actually have a Cohen extension. 
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LEMMA 2. (1) holds if 0 <= (2~~ M . 

PROOF .(cf. [4, (3.3)-(3.6)]). Let A _ 0 be such that M [A] is a Cohen extension of 

M, N~ taJ= 0 and M[A] has the same cardinals greater than or equal to 0 as M 

(see [4, (3.3)]). Next let Wx (~M), W2 (eM[A])  be well-orderings of the reals 

(subsets of co) in M and M[A] respectively. We define the sequence of reals 

(a~14 < 0) in M[A] as follows. 

If 4 < 0 and 4 is not a limit ordinal, a~ is the first real in M[A] (under W2) 

which codes the ordinal 4 (that is, which has the form {2~3J](i,j)e R} where R 

is some ordering of integers in order type O. 

If 4 < 0 and 4 is a limit ordinal, a~ is the first real in M (under W1) which does 

not code any ordinal and is distinct from a~ for all q < 4. 

Before proceeding we must show that for each ~ < 0, such a real a~ exists. 

For nonlimit 4 this is obvious since every ~ < 0 is countable in M[A]. For limit 

4 note the following: the set E = {x ~ Mix is a real which does not code an 

ordinal} is in M,  and has power 2 ~~ in M (since E _ {x ~ M[ 5 ~ x _: co}). Since 

0 < (2~~ M, there is in M a one-to-one function f :  0 ~ E. Now suppose ~ < 0 

is limit and a~ exists for all q < 4. If ar does not exist this means E _ {a~ [~/< 4} 

and so, since (a, [ ~ < 4) e M[A] we have in M[A] a one-to-one function g: E - ~ .  

Combiningfand 9 we have in M[A] a one-to-one function h: 0 ~ 4, contradicting 

the fact that 4 < 0 = R~ Eal . 

To sum up, we have in M[A] a sequence of reals (a~[4 < 0) without repe- 

titions, such that for nonlimit 4 < 0, a~ codes ~. 

We now follow word for word [4, (3.5)] to obtain a real a (called x in [4]) 

such that M[A, a] is a Cohen extension of M[A] with the same cardinals as M[A], 
and R(a,~) = no, R(a,a~) = a~+l for all ~ < 0. (There is no need to recall 

how the operation R on reals is defined; we only need to know that its definition 

is absolute for transitive e-models of ZFC.) 

It is now clear that M[a] is a model of ZFC. The sequence (a~[~ < 0) is in 

Mini because it can be defined within Mini by induction as follows: 

ao = R ( a , ~ ) ,  a~+t = R(a,a~) and for limit 4 one repeats the original defi- 

nition of ar 

Therefore every nonlimit 4 < 0 is countable in M[a], so 0 < N~ t~]. But 

0 ~MEa,~J hence 0 = N~ t~] Cardinals of M greater than 0 are cardinals in 

M[A, a] hence in Mini. This completes the proof of(l), assuming 0 < (2~~ ~t. 

LEMMA 3. (1) holds if 0 is not strongly inaccessible in M. 
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PROOF. We are assuming that 0 is regular and uncountable. If in addition, 

0 is not strongly inaccessible, choose an infinite cardinal 2 of M such that 

2 < 0 < (2~) u . Let x be a real such that Mix] is a Cohen extension of M in which 

2 is countable and every # > 2 which is a (regular) cardinal in M is a (regular) 

cardinal in M[x] (refer to [4, (3.2), Rem. 2]). Since 0 > 2 and 0 is regular in M,  

0 is uncountable and regular in M[x]. Also, clearly, Mix] V 0 < 2 t~~ (since in 

M there is a one-to-one function from 0 into subsets of 2). Thus Lemma 2 is 

applicable to Mix] and 0, and yields the existence of some y __ co such that 

M[x, y] is a model of ZFC in which 0= N1 and which has the same cardinals > 0 

as Mix] (hence as M). Using a standard pairing function of reals we obtain a 

real a such that M[a] =Mix, y], and clearly M[a] has all the properties required 

in (1). 

LEMMA 4. (1) holds if 0 is strongly inaccessible in M. 
This is part of [4, Th. 3.2]. 

Combining Lemmas 3 and 4 we have the desired result. 

2. Construction of the associated Boolean algebra 

We still have to show that M[a] of Section 1 is a Cohen extension of M (that 

is, it is obtained from M by adjoining an M-generic filter on some partially ordered 

set in M). A look at the proof in Section 1, and the proof of [4, Th. 3.2] (which 

we needed for Lemma 4) shows the model Mini is always obtained from M by 

a sequence of steps, each of which is the formation of a Cohen extension or of a 

submodel (for example, M[a] ~ M[A, a]), so that the assertion follows imme- 

diately from the following two known claims. 

Claim (I) If M' is a Cohen extension of M and M" a Cohen extension of M', 

then M" is a Cohen extension of M.  

Claim (II). I f N  is a Cohen extension of M,  aEN, a ~_ M, then Mini is a 

Cohen extension of M.  

Once one knows the equivalence of extensions by generic filters on partially 

ordered sets with extensions by generic ultrafilters on complete Boolean algebras 

(henceforth referred to as CBAs) (see [2, Lemma 45, p. 52]), Claims I and II reduce 

to the corresponding results about ultrafilter extensions, which follow easily 

from [2, Lem. 85, p. 100 and Lem. 69, p. 86, respectively]. (The original source 

is [61, but the formulations of Jech are just what we need at the moment.) 

This completes the proof of Theorem 1. To analyze the Boolean algebraic 
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implications, it is slightly more convenient now to leave the countable models 

and adopt the framework of Boolean-valued models in which Solovay and 

Tennenbaum work in 16]. We shall assume the properties of V (~) ( g  any CBA) 

reviewed or proved in I-6, Sects. 3-5]; we write VC~)~ ... for I[ "'" [I ' ~ )=  1. Two 

facts which are mentioned in 1-6] in connection with the countable chain con- 

dition (CCC) will be needed below in the more general case of  CBAs satisfying 

the 0 chain condition; 

(2) there are no 0 disjoint nonzero elements, 

where 0 is any uncountable regular cardinal. The first is that if ~' is a CBA satis- 

fying (2) then for every ordinal ~ > 0 

0~ is a (regular) cardinal =~ V (~ ~ ~ is a (regular) cardinal. 

This is well known. (Remark : We use ~ to denote the canonical embedding of  

V in V (~) . For typographical reasons we are unable to use " as appears in [6].) 

The second fact is that I-6, Lem. 5.2.6, p. 215] generalizes to (2) as follows. 

Let ~ be a CBA, ~ a CBA in V (~), ~ = & ~ ~ .  Then, for any uncount- 

able regular cardinal 0, the following are equivalent: 

(i) cr satisfies (2). 

(ii) ~ satisfies (2) (so that V (~) ~ 0 is a regular cardinal) and V (~) ~ ~ satisfies 

(2') the 0 chain condition. 

The proof  of  this for the case 0 = Nl, given in I-6, pp. 223-224] generalizes 

almost word for word. 

The analogue of Theorem 1 in the present framework is Theorem 5. 

THEOREM 5. Let 0 be an uncountable regular cardinal. There is a countably 

#enerated CBA ~ such that V (~)~ 0 = N l ,  and for every cardinal x >= O, 

V t~) ~ ~ is a cardinal. Moreover, ifO is not strongly Mahlo, then ~ satisfies (2), 

and in every case ~ satisfies 

(2") the 0 + chain condition. 

Let us sketch the proof for the case 0 =< 2 t~~ corresponding to Lemma 2. 

One begins with the set ~1 of  forcing conditions needed to collapse all cardinals 

below 0 to No (see [5, pp. 14-15] for the definition o f ~ l  and the proof that there 

are no 0 pairwise-incompatible conditions). Let ~1 be the CBA associated with 

~1 as in [6, (7.6)]. (We denote ~1 = RO(~I ) ,  where RO is for regular open.) 

~1 satisfies (2) and V ~ ' ~  0 = N1. 
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We now repeat in V r what was done in M[A] in the proof of Lemma 2. 

In view of the maximum principle [6, (3.9), 1], there is s o m e f ~  V ~1) such that, 

letting X be the set of all reals and W a well-ordering of it, the following holds 

in Vr  

(3) f is a sequence of reals of length 0; f is one-to-one; for nonlimit ~ < 0, f(4) 

is a code for 4; for limit 4 < 0, f ( O  is the first element of ~ ,  under I~, which 

does not code an ordinal and differs from f01) for all ~/< 4. 

Now, the argument of [4, (2.4)-(2.5), (3.5)] (that is, the trick of almost-disjoint 

sets) can be viewed as the proof of Theorem 6. (The operation R is defined in 

[4, (3.5)]; again, the specific definition has no importance once one notes that 

it is absolute.) 

THEOREM 6. Let f be a sequence without repetition of reals, whose domain 

is a limit ordinal a. Then there is a CBA ~ satisfying the CCC such that the 

following holds in V(~): (3x c o9) [R(x, ~j)  = f(O) and for all 4 <~ ,  

R(x,f(O) = f(4 + 1]. 

Since Theorem 6 is a theorem of ZFC it holds in V (~'). Using it there for 

the element f ~  V (~') chosen earlier and for a = 0, we obtain by the maximum 

principle an element ~ e V ~ ' )  such that V t~') ~ [ ~  is a CBA satisfying the CCC 

and IJ (3x c_ o9 [R(x, ~ )  =f(0)  and for all 4 < 0, R(x,f(4)) = f(4 + 1)] ii = a].  

Here we obviously have the situation for which the results of [6, Sect. 5] have 

been developed. So let us form the CBA ~g = ~1 | ~ .  Since ~x satisfies (2) and 

satisfies (2') in V (~'), ~ satisfies (2). The isomorphism between (what might 

be denoted) V (a)(~) and V (~) leads to the following result. (To be precise, we 

are using [6, Lem. 5.3.3].) 

J[ (3x c o9) JR(x, ~b) = f(0) and for all 4 < 0, R(x,f(4)) = f(~ + 1)] ]l (*) = 1. 

Actually we should write here i .  ( f )  rather than f here, where i .  is the natural 

embedding of V (~') in V (~) . However, we identify V (~') with its image in V (*), 

and may also regard V (~') as a class in V (~) , so that conditions (3) above, which 

are absolute, hold also in V (*) . (The formal machinery needed in this step is 

given in [6, (3.6)-].) 

Using the maximum principle in V (*) choose a ~ V (*) such that 

V (~) ~ [a c_ o9, R(a ,~)  = f(0) and for all ~ < 0, R(a,f(O) = f(~ + 1)]. 

Now let & be the complete subalgebra of cg generated by {[l h ~ a H(~e) ] n < co}. 
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(2). Again, we regard V r as a class in 

elements (~ for all x) as well as a,  and is 

a transitive model of ZFC. Therefore it contains f (by the same reasoning which 

showed in Section 1 that (ar ] ~ < 0) ~ M[a]; the absoluteness of R is needed 

here) andfsatisfies (3) in it. It follows that this class satisfies 0= ~1 and has the 

same cardinals > ~ as V and V (*). (To be precise, we should have talked in 

V (*) about the class T c~), in the notation of [6, (3.6)].) Therefore V c~) has all 

the desired properties, and we have completed the proof of Theorem 5 for 0 < 2 t~l. 

The treatment of the case where 0 is not strongly inaccessible, corresponding 

to Lemma 3, is similar and even easier. Again one combines two Boolean ex- 

tensions which satisfy (2) (the first makes 0 < 2 s~ and the second, given by 

Theorem 5 for the case 0 < 2 ~~ makes 0 = NI) and so the product CBA ~' 

satisfies (2). There is no need to take a subalgebra, since ~ can be seen to be 

countably generated by using [6, Lem. 5.2.5]. 

We now recall the definition of Mahlo numbers. An infinite cardinal 0 is called 

weakly Mahlo when every closed and unbounded subset of 0 contains a regular 

cardinal (this implies that 0 is weakly inaccessible, and is equivalent to the de- 

finition of [4, (3.1)]). 0 is called strongly Mahlo when every closed and unbounded 

subset of 0 contains a strongly inaccessible cardinal (this implies that 0 is strongly 

inaccessible). Note that if 0 is strongly inaccessible, A is a closed and unbounded 

subset of 0 and B = {ct e A I c~ is a limit cardinal, and for all x < ce, 2 ~ < ct}, 

then B is closed and unbounded too, and every regular cardinal in B is strongly 

inaccessible. This substantiates Lemma 7. 

LEMMA 7. 0 is strongly Mahlo iff it is strongly inaccessible and weakly 

Mahlo. 
Now, Solovay's proof of ['4, (3.2)] for 0 not weakly Mahlo is very similar to 

our proof of Lemma 2 (in fact, it served as the model for our proof) and it can 

be analyzed in the same way to obtain a countably generated CBA g satisfying (2) 

and V r ~ 0 = NI. Combining this with our previous result and Lemma 7 the 

proof of Theorem 5 is complete for 0 not strongly Mahlo. 

If 0 is strongly Mahlo one needs Jensen's argument ['4, (3.7)-(3.9)]. The de- 

sired CBA & appears as a countably generated subalgebra of the CBA, c~ corres- 

ponding to a three-stage extension M ~ M[f]  ~ M['f, A] ~ M[f, A, x] in the 

notation of [4, (3.7)]. The set of forcing conditions in the first step has power 

0 ([4, end of(3.9)]) and thus the corresponding CBA satisfies (2"). In the second 
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and third step even (2") is satisfied, hence the product algebra cr satisfies (2"), 

and so does its subalgebra .~. This completes the proof of Theorem 5. 

REMARK. Here is an alternative approach to Theorem 5. If M is a transitive 

e-model of ZFC, 0 a regular cardinal in M,  then by a 0-extension of M we mean 

a generic ultrafilter-extension of M through a CBA satisfying (2) (equivalently 

a Cohen extension through a partially ordered set satisfying the 0 anti- 

chain condition). In analogy with Claims I, II above, it is not hard to prove the 

following. 

Claim (I)'. I fM '  is a 0-extension of M and M" is a 0-extension of M' then 

M" is a 0-extension of M.  

Claim (II)'. If N is a0-extension of M,  a E N ,  a c__co, then M[a] is a 

0-extension of M through a countably generated CBA. 

These claims and the proof of our Theorem 1 imply rather easily the truth 

of Theorem 5 in M,  hence, by well-known arguments, in the universe. 

3. The powers of countably generated CBAs 

This paper developed from the attempt to determine exactly the possible 

powers of countably generated CBAs. Some basic results in this direction are 

reported in [7, Sect. 3] and here we shall prove Theorem 8. 

THEOREM 8. Let v be a cardinal which is not strongly Mahlo. v is the power 

of  a eountably generated CBA iff  v = 2 n for  some n < co or v = 2g for  some 

regular uncountable cardinale 0 where 2 ~ = ~,~<o 2~. 

PROOF. We ignore the trivial case of finite v. Let v = I~[  where ~ is an 

infinite countably generated CBA and let 0 br the smallest cardinal (denoted 

by CC(~)) such that ~ satisfies (2). By [1, Th. 1] 0 is regular and greater than 

N o. By [7, (9.3)] (which the reader can probably prove for himself), 1 I ", 
so that v = 2 ~ This proves the -~ direction of the iff in Theorem 6. For the 

4-- direction we use the assumption that v is not strongly Mahlo. Suppose v =2 L 

where 0 is regular and greater than No. Clearly 0 is not strongly Mahlo. If 0 = RI, 

v is the power of the CBA of all subsets of co. If 0 > NI, let ~' be a CBA as in 

Theorem 5. ~ satisfies (2) but not the less than 1r chain condition for any 

ir (for this would imply, if r >No, that V(~)k N t =< K < 0 = NI). Thus 

0 = CC(~) and by [7, (9.3)] again = 2'-= v. This completes the proof. 

REMARK. In the same way, using notation and results of [.7, (9.1)(2)] we 

can prove the following statement. 
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(4) Let 2, # be infinite cardinals, 2 not strongly Mahlo. Then ~. is the power 

of  some (N0, < #)-generated CBA iff 2 = 2~for some regular uncountable car- 

dinal 0 < #.  

Now let ). be strongly Mahlo. Is there a countably generated CBA ~ such 

that -- 2 (equivalently CC(~g) = ;t)? The question is open except for the 

case of weakly compact 2, in which the negative solution was discovered inde- 

pendently by M. Magidor, T. J. Jech, and K. Kunen (and perhaps others). In 

fact, the argument of [3, Sect. 31 shows that i f& is any CBA of the weakly compact 

power ~c, and A is a subset of ~ ,  I A 1 < x, then ~ has a complete proper 

subalgebra cg containing A. Hence, as Jech notes, & is not generated by any set 

of power less than x.  
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